
How To Map Modbus Variables Using Structures.docx Page 1 of 7 

Internal 

HOW TO MAP MODBUS VARIABLES USING STRUCTURES 

Structures offer a convenient and time-saving means for creating, mapping, maintaining, and 

using Modbus variables in a CODESYS application. 

This example will show the advantages of mapping Modbus variables being read from a 

Modbus slave device using a structure. 

 
 

The examples shown in this document were created using the following hardware & software: 

 

  

Item Number Description SW or FW Level 

- CODESYS 3.5 V3.5 SP19 Patch 2 

751-9301 WAGO Compact Controller 100 04.04.03(26) 

750-862 WAGO Controller ModbusTCP (used as MB slave) 01.03.05(07) 

  - 



How To Map Modbus Variables Using Structures.docx Page 2 of 7 

Internal 

Start by creating a structure in CODESYS that will represent all Modbus data being read in a 

single transaction.  Here a structure is created called myModbusInputs. 

  

 

Create a list of the application’s Modbus variables.  These could be typed within CODESYS, but 

any editor can be used.  Excel works well because its editing features help to quickly format 

each line.   

 

  



How To Map Modbus Variables Using Structures.docx Page 3 of 7 

Internal 

Unfortunately, there is a problem.  It is necessary that REAL and DINT (and some other) 

variables start at double-word boundaries.  To accommodate this, add some dummy variables 

to occupy unused space.  Depending on the type of data being transmitted, this may not be 

necessary at all, or it may be necessary in multiple places, as shown here:   

 

These dummy variables can be named anything, but it’s advantageous to name them starting 

with the letter ‘z’.  This will be explained later. 

 

When the list is complete, copy it to the structure. 

 

  



How To Map Modbus Variables Using Structures.docx Page 4 of 7 

Internal 

When the structure definition is complete, declare a variable of the structure type.  Keep the 

name short, such as ‘MB’ or ‘MBI’ (for Modbus Inputs), because this name will be typed 

frequently. 

 

 

Also declare a pointer to the structure type. 

 

 

Add the necessary devices to define the Modbus TCP Slave connection. 

 

  



How To Map Modbus Variables Using Structures.docx Page 5 of 7 

Internal 

Open the ModbusTCPSlave I/O Mapping editor, and type a variable name for the first word of 

input data.  Here it is called ‘MyFirstInputWord’. 

 

 

IMPORTANT: Make sure the ‘Always update variables’ parameter is enabled. 

 

 

  



How To Map Modbus Variables Using Structures.docx Page 6 of 7 

Internal 

Now type two lines of code in your project that will map the entire Modbus input process image 

to the structure: 

pMB := ADR(MyFirstInputWord); 

MB := pMB^; 

 

 

The entire input process image is now mapped, and you can start using the variables in the 

project.  To do so, type ‘MB.’, and a picklist of each Modbus variable will appear for easy 

selection.  Note that the variables appear alphabetically – this is why it is advantageous to start 

dummy variable names with the letter ‘z’. 

 

 

  



How To Map Modbus Variables Using Structures.docx Page 7 of 7 

Internal 

Q. What if there are multiple slave devices? 

A. If there are multiple slave devices, a unique structure should be declared for each device, 

and these two lines of code (with unique variable names) need to be added for each 

structure. 

pMB := ADR(MyFirstInputWord); 

MB := pMB^; 

 

Q. What if there is a change to the number of Modbus variables being communicated to a 

device? 

 

A. This is one of the greatest advantages of this solution.  If the Modbus variables change, just 

change the structure definition to match (using any editor).  The variables will be remapped 

accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  


